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Fig. 1: System diagram for STEER. At training time, we re-annotate an offline dataset of diverse robot behaviors at training time, focusing on describing
the primitive skills used to manipulate objects and, specifically, on annotating how the robot performed each skill. We then use this re-annotated dataset to
train a language-conditioned low-level policy (RT-1 in our case). At inference time, when given a complex instruction like “pick up the flower pot without
disturbing the plant”, a high-level system (VLM or human) identifies the appropriate low-level skills and determines how to perform them. This emphasis
on the “how” enables more contextual behavior.

Abstract— The complexity of the real world demands robotic
systems that can intelligently adapt to unseen situations. We
present STEER, a robot learning framework that bridges high-
level, commonsense reasoning with precise, flexible low-level
control. Our approach translates complex situational awareness
into actionable low-level behavior through training language-
grounded policies with dense annotation. By structuring policy
training around fundamental, modular manipulation skills
expressed in natural language, STEER exposes an expressive
interface for humans or Vision-Language Models (VLMs) to
intelligently orchestrate the robot’s behavior by reasoning about
the task and context. Our experiments demonstrate the skills
learned via STEER can be combined to synthesize novel
behaviors to adapt to new situations or perform completely
new tasks without additional data collection or training. Project
website: https://lauramsmith.github.io/steer

I. INTRODUCTION

Consider the breadth of situations a human encounters
on a daily basis, from pouring a cup of coffee in their
kitchen to grabbing objects from a cluttered supply closet.
Designing robot systems that can navigate these varied,
nuanced scenarios is a major challenge, requiring systems
that can adapt to complex and dynamic situations. This has
led many roboticists to explore learning-based solutions that
may generalize better than hand-engineered ones. Imitation
learning (IL) is a widely-used, data-driven approach that
distills expert demonstrations into learned policies, enabling
fine-grained manipulation of high-dimensional robot systems
in the real world [1], [2], and has been shown to scale
with more data in language-conditioned, multi-task [3]–[6]
and even multi-robot [7]–[9] regimes. While these works
have shown remarkable promise, the resulting robot systems

remain fairly limited to situations seen during training. And
the span of these training scenarios is significantly narrower
compared to those of other domains, such as vision and
language, where large-scale supervised learning has excelled
as real-world embodied data collection is significantly more
expensive and bottlenecked by physical constraints.

Humans, on the other hand, can adapt to very complex
situations without any previous first-hand experience. We
exhibit ‘common sense’ generalization—using our inherent
understanding of complex, high-level concepts like object
affordances, intuitive physics, and compositionality to adapt
our past experiences intelligently as new situations arise.
This deliberate, analytical thinking has been termed ‘System
2’ processing, in contrast to reactive ‘System 1’, reflexive
low-level behaviors that are less cognitively demanding but
equally essential for our behavior [10]. Emulating this blend
of reasoning and reflex in robotic systems is challenging, and
various approaches have been developed to bridge the gap.
One notable example is SayCan [11], which leverages a large
language model (LLM) to plan over and sequence learned
policies to perform long-horizon tasks. SayCan compensates
for the LLM’s lack of direct physical grounding by using the
policies’ value functions to assess feasibility. Moreover, this
approach is limited to sequencing the original tasks demon-
strated, while many realistic tasks require finer, more nu-
anced control of low-level policies (as illustrated in Figure 1,
right side). Subsequent works have focused on enabling
LLMs or VLMs to interface at a finer granularity with pre-
programmed System 1 behaviors through representations like
code [12] or semantic keypoints [13]. Another strategy that
has emerged is to fine-tune VLMs on embodied data [5], [6],
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drawing on web-scale pre-trained representations for robot
control. Notably, these approaches focus on optimizing the
high-level module to make the best use of a fixed set of skills,
which still constrains their adaptability in unstructured, novel
scenarios. Rather than modifying the System 2 reasoning
layer, we pursue an orthogonal direction by focusing on
making System 1 policies more flexible and responsive
to high-level guidance. By designing adaptable System 1
policies, we enable seamless interaction with a fixed System
2 module—such as human or VLM-based reasoning. This
adaptability allows System 1 to be dynamically adjusted in
response to high-level instructions, ultimately broadening the
range of tasks the system can perform and its capacity for
robust, generalizable behavior.

We present STEER: Structured Training for EmbodiEd
Reasoning, an approach for training low-level reactive poli-
cies that can be flexibly steered or directed by a higher-level
reasoner, such as a human or VLM. Our key insight for
enabling this is producing dense language annotations of
the collected robot data, and training a conditional policy
on granular language instructions. This policy can then
be conditioned on each part of a plan generated from a
high-level model (VLM/LLM), giving a combination of the
respective strengths of System 1 and System 2 processes.
Furthermore, this can enable adapting to new situations that
require synthesizing behaviors that are not explicitly demon-
strated during training. We instantiate this system using
existing real-world datasets, proposing a simple automated
labeling pipeline based on proprioceptive observations to
extract basic object-centric manipulation skills and distill
them into a low-level policy. We then propose a strategy for
using a VLM to produce language directions for the low-level
policy. Importantly, we show that this enables us to repurpose
skills in the robot dataset in a meaningful manner at test
time to handle a new situation autonomously. In summary,
the contributions of this work are as follows:

• We introduce STEER, a method that augments robot
demonstration datasets with descriptive functional lan-
guage annotations comprising of grasp-centric and
rotation-based primitive components.

• We show that STEER enables training low-level robot
policies which are significantly more flexible and steer-
able than prior imitation learning methods, enabling
humans or pre-trained VLMs to direct low-level policies
for generalizing to novel everyday manipulation tasks.

II. RELATED WORK

Imitation Learning. Imitation learning (IL) has emerged as
the most popular paradigm for training real-world manipula-
tion policies [2], [3], [14]; however, deploying these models
in unstructured scenarios remains a challenge. Robot policies
trained on human-collected demonstration data can have
trouble adapting to “out-of-distribution” scenarios where
demonstrations are sparse [15]. This is fundamentally due
to the expensive-to-collect small scale robot data, in com-
parison to the web-scale text and image datasets for train-
ing today’s foundation models [16]–[18]. Due to practical

constraints on obtaining more robot data, a large body of
work has explored using text and vision foundation models
to improve generalization in robotics from existing datasets.
This includes expanding IL policies to open-world object
grasping by using open-vocabulary object detection [19] and
relabeling episode-level instructions via CLIP [20] or other
foundation models [21], [22]. Our work is closely related
to aforementioned works in dataset relabeling [20]–[22]: our
framework expands robot capabilities by relabeling different
behavior modes in existing heterogenous robot demo datasets
to train more effective policies.

Policy Conditioning for Generalization. Prior works have
sought to enable test-time generalization by exploring ex-
pressive modalities for policy conditioning, such as goal
target poses [23], goal images [24], [25], trajectories [26],
[27], code [12], or combinations of vision and language [28],
[29]. However, while these modalities all show promise
in action generalization, it is challenging for off-the-shelf
high-level reasoning systems like VLMs or humans to plan
over these creative modalities; natural language remains the
main modality utilized in complex planning by state-of-the-
art LLMs and VLMs. Thus, STEER focuses on improving
language-conditioned action prediction, by studying granular
instructions such as “grasp from the side,” or “lift up,” that
can be easily composed at test-time.

Skill Learning. There is extensive research in utilizing
learned ‘skills’ to accelerate learning new tasks by exploring
with temporally-extended, semantically meaningful action
sequences [30]–[40]. These works often use a hierarchical
approach, where a high-level policy is learned through in-
teraction with reinforcement learning through environment
interaction to compose the learned skills [35], [38]–[43].
EXTRACT [40] in particular uses VLMs to label skills
from offline data to enable learning new tasks. Our work
also exploits the intuition about skills being transferable to
synthesize new behaviors. However, we use common-sense
reasoning in off-the-shelf VLMs to choose appropriate skills
for the situation without training a separate policy.

Affordances. Our work leverages VLMs’ common-sense
reasoning capabilities to plan for longer-horizon tasks and
provide strategies for the robot to approach novel configura-
tions of objects. The model does this by reasoning about how
humans would approach tasks from visual image input. Prior
work investigates how to represent human priors for how to
act in scenes using affordances [44], [45] in image space,
and even shown how to deploy these on real robot systems
for guiding exploration [46], [47]. While effective, these
affordances are often represented in the form of keypoint
coordinates in pixel space, and make particular assumptions
on the kinds of tasks to be performed. Our approach can
be thought of reasoning about such affordances in language,
which makes it amenable for off-the-shelf VLMs or humans
to naturally interact with and opens the door to express more
sophisticated descriptions than in visual space.



III. SYSTEM DESIGN

We present STEER, a robot learning framework that aims
to expand the capabilities of a robot trained on a set of expert
demonstrations by extracting flexible skills from existing
datasets, then relying on a module with strong reasoning
capabilities to orchestrate the skills intelligently. Our system
consists of two main components: low-level ‘System 1’ skill-
training and high-level ‘System 2’ high-level reasoning. In
this section, we describe design decisions for acquiring and
then integrating them into a practical end-to-end system.

A. Learning Flexible, Composable Manipulation Skills

Our goal is to extract skills that can be easily reasoned
about and composed by either humans of foundation models.
Thus, we aim for skills that are language-indexed and object-
centric, allowing a foundation model with knowledge about
how the state of an object should evolve to accomplish a
certain task to be able to steer despite not having direct motor
control capabilities. To achieve this, we densely annotate
existing datasets, then train a language-conditioned RT-1 [4]
policy with these segmented and relabeled instructions.

Our key idea is to break down basic composable skills
into semantically identifiable categories that can be associ-
ated with a language description. As intuition, many have
observed that human-collected behavior data is challenging
to learn from in part due to different data collectors having
different ‘styles’ or strategies [48]. For example, human
driving styles—aggressive, cautious, smooth, or jerky—are
highly variable. Prior works have dealt with this heterogene-
ity by using latent variables to explain modes [49], new algo-
rithms [50], or more expressive generative models [2], [51].
We expose these different styles as adjustable parameters,
allowing robots to flexibly adapt their behavior. We focus
on shared, object-relational skills such as grasping, lifting,
placing, and rotating. These skills, originally demonstrated
using templates like pick <object>, move <object1> near
<object2>, knock <object>, place <object> upright,
can be executed with varying strategies. We identify the
following key factors:
Grasp Angle. Objects can be grasped in multiple stable
positions, and the particular way indeed impacts the ability
to perform downstream tasks. However, grasp positions are
rarely prescribed (and therefore labeled), as they are often
implicit. We hypothesize that controlling grasp angle can
improve task composition and adaptability. We use a simple
approach to label the grasp approach by manually labeling a
relatively small set of ‘anchor’ grasp poses. We then label an
arbitrary grasp with the label of its nearest neighbor ‘anchor’
pose as measured by cosine similarity. We represent a grasp
pose as a 3D unit vector by rotating [0, 1, 0] by the wrist
quaternion and we identify the time of a grasp where the
gripper changed from fully open to fully closed. To define
and label the anchor poses, we took 3D unit vectors that
are linear combinations of the elementary 3D basis vectors
(resulting in 27 directions). We then clustered 1000 grasps
from our dataset and visualized the clusters in order to label
them. This only requires visualizing and labeling roughly

Fig. 3: Anchor vectors and their semantic labels. Purple, green, and pink
vectors represent side, top-down, and diagonal grasps.

20 clusters, but then can be used to automatically label the
entire dataset of 70K demonstrations. In the grasp data, we
identify three distinct modes via inspecting the grasp images:
top-down grasps, side grasps, and diagonal grasps (visualized
in Figure 3). The sub-trajectory starting from the beginning
of the demonstration to the time of the grasp identified is
relabeled to grasp the <object> in a <grasp approach>,
where <object> is from the original instruction and <grasp
approach> is from the anchor’s label.
Reorientation. Another mode of behavior identified in the
dataset is of reorienting objects. In order to identify and label
these reorientations, we first label the wrist orientation for
every timestep where the gripper is fully closed. Then if
the gripper orientation switches between two of the modes
(as labeled in Grasp Angle), we label the sub-trajectory
preceding it as reorient the <object> <direction>,
where <object> again is from the original instruction and
<direction> indicates whether the object is rotated from
upright to horizontal or vice versa.
Lifting/Placing. Complementing grasping, we label whether
the object was lifted or placed at the end of completing the
original task. Lifting allows the robot to continue in-hand
manipulation without setting the object down or provides the
ability to gain additional clearance. If the object is still held
at the end of the episode and the gripper moves vertically
upward (common for originally-labeled pick <object>
episodes), we label the final sub-trajectory as hold and
lift the <object>. If not, similar to identifying grasps,
we identify the time of placing using the gripper state and
label this sub-trajectory as place the <object>. As this is
separate from reorientation, placing implies setting the object
down while maintaining its orientation.

B. Orchestrating Learned Skills

A key capability of the System 2 component is its ability
to reason about the visual observation of the scene, the task
description, and the robot’s low-level skills to effectively
select and sequence appropriate actions. While a human
can perform this reasoning, we also demonstrate how it
can be automated using a VLM. Our automated System 2
component is implemented as a code-writing VLM agent,
enabling it to autonomously execute verbalized plans without
additional modules or a human in the loop. To facilitate
this, we define an API for the action primitives accessible
by the VLM to interface with the System 1, reactive low-
level RT-1 policy skills as described in Subsection III-A. The



Fig. 4: Sample initial conditions for the new object-grasping scenarios
evaluated. (top left) a kettle with a handle extending above it, (top right) a
potted plant, (bottom) 2/15 scenes for Fruit in Clutter. The kettle should
be grasped over top. In order to avoid disturbing the plant, the flower pot
should be grasped around its body. Lastly, the fruits should be grasped while
avoiding knocking over the other objects in the scene.

Fig. 5: Grasp steerability of OpenVLA, RT-1, and STEER. We test the
steerability to grasp an object in different ways that would be appropriate
for different, unseen tasks, e.g., in order to pour out of the Coke can, the
robot should grasp the can around its body. When prompted to “Grasp the
Coke can” from the top (top row) versus the side (bottom row), models
without dense annotation show no perceivable change, while our densely
labeled model adjusts its behavior, enabling new downstream tasks.

API is based on translating the language commands into a
simple API that the VLM agent can access. This breakdown
is based on what the robot should do and how to do it.
Each primitive skill (i.e. grasping, rotating, lifting, placing) is
represented by a function with a keyword argument modify-
ing how that primitive is accomplished (i.e. grasp(object,
"top-down"). Internally, the API translates this code into
the corresponding natural language the RT-1 policy was
trained on. Following Arenas et al. [52], we use a system
prompt to tell the VLM to control its physical embodiment
through code, then provide the robot’s visual observation
of the scene and a description of the high-level task. One
benefit of this design is its modularity and interpretability.
The prompt can be modified to tailor behavior according
to the specific situation the robot is in, the generated plans
can be viewed before execution. The exact system prompt
we use in all experiments and example outputs produced
by the model can be found on our project website: https:
//lauramsmith.github.io/steer.

IV. EXPERIMENTS

To understand the efficacy afforded by multiple strategies
extracted and learned from the offline data, we test whether

our model enables more effective grasping in unseen scenar-
ios. We test this by manipulating objects that do not appear
in the offline dataset and require specific grasp strategies
to succeed. We then test STEER’s ability to perform new
behaviors—requiring complex reasoning and reliable motor
control. This is first demonstrated by having a human expert
create a plan for STEER, to show our design decisions
lead to composable primitives. We then leverage a VLM
to automate the planning. We aim to answer the following
concrete questions through our experiments:

1) Does learning multiple modes of behaviors used to solve
a task improve the adaptability of a robotic manipulation
system to novel situations?

2) Can combining extracted skills from heterogeneous
human demos enable entirely new tasks?

3) To what degree can a state-of-the-art VLM plan orches-
trate these skills autonomously?

A. Experimental Setup

We use a mobile manipulator with a 7 DoF arm, a two-
fingered gripper, and a mobile base, as used in RT-1 [4]. We
target a tabletop manipulation environment, where objects
on a counter need to be moved or arranged according
to natural language instruction. We use the multi-task (6
semantic categories) demonstration dataset used in RT-1 [4]
(70K demonstrations) and the dataset of grasping-only data
featured in MOO [19] (15K demonstrations). As we discuss
in Section III, the exact architectures of the low-level (System
1) and high-level (System 2) components can vary, as long as
the high-level component can reason over skills expressed in
language. We choose RT-1 [4] for our System 1 component
and Gemini 1.5 Pro [53] in VLM experiments. Videos and
setup details are available on the project website: https:
//lauramsmith.github.io/steer.

B. Improving Test-Time Adaptability

Setup. One of our central hypotheses is that explicitly
extracting, labeling, and training expressive primitives from
heterogeneous demonstrations affords our system with im-
proved robustness. When faced with unfamiliar situations
at test time, we expect some skills to generalize better or
be more suitable than others. To test this, we present the
robot with three unseen object-grasping scenarios (sample
initial conditions shown in Figure 4): a kettle with a handle
extending above it, a potted plant, and grasping a fruit
out of clutter. We choose unseen test objects specifically
to simulate challenging real-world settings in which naïve
grasping without a strategy is unlikely to succeed.

We first compare STEER against the baseline RT-1 [4]
model, with the same architecture, trained on the same demo
data as STEER, but with the original language instructions.
We condition STEER on the templated language it is trained
on, with the grasp strategy chosen by a human in these
experiments. We condition RT-1 on the templated language
it is trained on, i.e. “pick <object>”. For STEER and RT-
1, we train with a 50/50 split of the RT-1 and MOO
datasets since MOO comprises diverse grasping-only data.
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(a) Grasping results. Full successes are in solid colors.
Partial successes (defined as grasping the object with
undesired side effects like disturbing the plant or other
objects) are in light colors. For each method, we do
20 trials for Kettle, 10 trials for Potted Plant, and
15 trials/configurations of Fruit in Clutter.

(b) New task results. We run each method 10 times,
comparing the upper bound on performance of the
low-level capabilities afforded by each model to per-
form the task. Therefore, we use closed-loop human
guidance for language-instructed models and granular
goal images for the image-conditioned policy.

(c) We report the success rate of a VLM controlling
the robot compared to the human operator and find
that the VLM produces reasonable plans but there is
low-level policy failure due to sensitivity of the low-
level policy to language inputs.

Fig. 6: Results on grasping in unseen scenarios and performing a new task, with human or VLM guidance. We find that by having access to and being
able to reason about extracted low-level strategies enables higher success in OOD scenarios than the baseline RT-1 model and a state-of-the-art VLA.

We then compare to OpenVLA [8], a model that fine-tunes
a VLM [16] on robot data from the Open X-Embodiment
dataset [54]. The OXE dataset includes the same demo data
that RT-1 and STEER were trained on, in addition to data
from various other robots and tasks. This is meant to test
whether fine-tuning a VLM on robot data is sufficient to elicit
the desired reasoning and downstream execution capabilities
for these tasks as opposed to explicit re-annotation and
direction by a high-level module. We condition OpenVLA
on the same language, i.e., “pick orange flower pot without
disturbing the plant" or “pick apple while avoiding the other
objects" that we also provide our VLM to sufficiently define
the task in Subsection IV-D.
Results. We report the success rates in Figure 6a. RT-1
occasionally succeeds, but exhibits different strategies and
we observe that failures are often caused by a sub-optimal
approach. For example, when approaching the potted plant
without a direct side grasp, the pot is prone to falling or
grasping the plant leaves. OpenVLA performed similarly
to RT-1, demonstrating that additional web data does not
necessarily lead to sufficiently strong embodied reasoning
about how to grasp in a new scenario where a particular
approach is evidently necessary. For example, we find that
OpenVLA often picks the potted plant up, but does not
respect the language instruction of picking up the flower
pot without disturbing the plant and grasps from above
around the plant leaves. We further test whether it is possible
with human guidance to steer RT-1 and OpenVLA to grasp
differently through the same language prompting as STEER.
As shown in Figure 5, STEER clearly changes its grasp
strategy based on language prompting, whereas without re-
annotation, neither OpenVLA nor RT-1 adjusts its behavior
with more descriptive conditioning. This highlights that
decomposing the grasp strategies and exploiting the most
suitable one as we do in STEER is necessary in this case to
coax a model to generalize correctly.

C. Performing Novel Behaviors

Setup. Having demonstrated that STEER learns more flex-
ible skill primitives, we study how well we can engineer
behavior for a new everyday task without collecting new

demonstrations or additional fine-tuning. To test this, we
consider an everyday task, pouring, that is out of the distri-
bution of demonstrated tasks but should be achievable with
the motions that exist in the data. Pouring requires grasping
the cup from the side, such that the robot can easily tilt the
cup once lifted—avoiding singularities or spilling onto the
robot—then setting the cup back down onto the table upright.

We perform an extensive evaluation on the pouring task,
comparing against the best-case version of each baseline
and comparison. Each method exposes a different control
interface—for example, RT-1 is commanded with the natural
language instructions it has been trained on, while a BC
policy conditioned on goal images is commanded by giving
images of the sub-goals required to reach the desired end
state. For each method, if human assistance is used, the hu-
man coaxes the model to perform the task by providing what
they deem to be the best command that method supports, in
a closed-loop fashion. The human is not allowed to move
the objects or robot on their own, and a trial is halted if
the robot reaches an irrecoverable state (e.g. objects fall off
the table). For this task, we train RT-1 and STEER with
a mixing ratio proportional to the respective dataset sizes
(roughly 85% RT-1 dataset 15% MOO dataset) as we are
not testing generalization to new objects, rather maneuvering
seen objects in new ways. We compare to the following 4
baselines and prior methods:

1) RT-1 [4], which acts as our baseline set of action
primitives given by the original tasks in the datasets.

2) Language motions from RT-H [55], defined by narrating
end-effector movement to give language like move arm
left and rotate arm right.

3) A goal-image conditioned variant of RT-1. This tests
whether language is a better abstraction than goal im-
ages. For this comparison, we first perform a demon-
stration of the new task, then run a goal-image condi-
tioned policy passing images from that demonstration
as subgoals at the granularity of our extracted skills.

4) OpenVLA [8], to compare to a state-of-the-art model
pre-trained on web data and fine-tuned on robot data.

Results. Human orchestration with a STEER policy achieves



a 90% success rate on pouring as compared to 70% with a
policy trained with language motions from RT-H (Figure 6b).
In comparison, baseline RT-1 cannot complete the task
because it is not trained to reorient objects. Instead, it is
trained to "knock" over objects and place objects upright.
If the policy successfully places the cup back upright after
knocking, though, we consider the trial a half-success since
knocking the cup onto the table is not a desirable pouring
motion. The goal image baseline, despite having demonstra-
tion subgoal images from the same starting positions, fails
to perform the task successfully. We observe that the policy
is brittle and appears to match the arm pose in the subgoals,
rather than manipulate the object state as prescribed by
the goal image. OpenVLA, despite having access to the
same underlying robot demonstration data and VLM pre-
training, does not generalize to the new motion by stitching
together the appropriate motions. Instead, we observe that it
attempts to pick up and often knock over the cup. Despite the
very dense language motion instructions proposed by RT-H
achieving a high success rate, orchestration is significantly
more cumbersome as it requires tight closed-loop guidance.
This is evidenced by requiring on average 15 instructions of
the type "move arm forward and left" done in-the-loop as
opposed to 5 simple commands that can be executed open-
loop by STEER (i.e., "grasp pink cup from the side", "lift
pink cup", "reorient the pink cup to be horizontal", "reorient
the pink cup to be vertical", "place the pink cup").

D. VLM Orchestration

Now, we test whether a VLM can effectively select or
sequence appropriate skills afforded by STEER by reason-
ing about the context, in the visual observation and task
description, as well as the skills exposed through the API
without any examples (i.e. 0-shot). For these experiments, we
compare to human orchestration of the same STEER policy
as an upper bound on the performance. For each trial, we
query the VLM with the initial scene, task description, and
maintain the same system prompt. Exact inputs and outputs
for all experiments are on the project website.
Seen task, new scenarios. We see that the VLM successfully
produces the same high-level plans as the human expert
very reliably for the grasping tasks. However, as shown
in Figure 6c we see that there is a degradation in end-to-
end task performance compared to human orchestration when
executing the code produced by the VLM, and we analyze
these failures. For the kettle picking task, we note that the
low-level policy appears to be sensitive to the specific naming
of objects. That is, the VLM often produced code to grasp
the ‘black and white kettle‘ from the top instead of grasping
the ‘black and white object‘ from the top, and with further
analysis find that this instruction has a noticeable degradation
across all low-level language-conditioned policies. So, while
the VLM reasonably commands the policy to grasp from
above, the low-level policy is less reliable. We expect this to
be improved with denser annotation or augmentation on the
entity-level, whereas STEER is concerned with the motion-
level. For the Fruit in Clutter grasping task, the VLM did

Fig. 7: Rollout of STEER solving multi-step manipulation tasks with human
guidance and steerable manipulation.

not always command the appropriate action and we suspect
that similar object naming references (‘red apple’ instead of
‘apple’) impact the low-level policy performance.
Seen objects, new task. We observe that without any
examples, the VLM correctly identifies the grasp location to
pour from the cup,in a manner that a human would perform
the task. It then recognizes that it must reorient it, then
reorient it back in order to place it back upright on the table.
A common failure mode is that the VLM misunderstands
that 90 degree rotation does not invert the cup. However,
this artifact luckily does not affect performance on this task.
The VLM succeeded in 6/10 trials for zero-shot pouring.

E. Additional Experiments

Self-improvement with in-context learning. For the pour-
ing task, the VLM orchestrated policy succeeded in 6/10
trials. We tested whether feeding the VLM-generated pro-
grams that resulted in on-robot success as examples in the
prompt would lead to a higher success rate. Indeed, with
the self-generated in-context examples, the newly generated
programs succeeded in 8/10 trials for the same pouring task,
improving upon the 6/10 in 0-shot. This only requires human
labels for task success and no model fine-tuning.
Cup unstacking and flipping. We also test our ability to
use STEER to perform a longer-horizon task of unstacking
and reorienting a cup upright, so as to be able to dispense
a drink. This task also requires grasping with intention for
the future object reorientation steps. We demonstrate that we
can guide STEER to perform this new task (see Figure 7).

V. DISCUSSION

We presented STEER, a robotic system that can follow
natural language instructions for manipulation. Rather than
collecting data for new tasks, STEER uses a novel methodol-
ogy for relabeling existing data with flexible and composable
manipulation primitives. This relabeled data is used to train a
small language-conditioned policy, which can be controlled
using either a high-level VLM agent or a human. STEER can
be steered to perform specific manipulation tasks, which in
conjunction with the commonsense-reasoning afforded by a
VLM agent can perform intelligent multi-step manipulation
without ever collecting new data. We report that our simple
recipe can outperform large, end-to-end models like Open-
VLA (despite using a 100× smaller model and data). Since
the performance of STEER is driven by our re-annotation
of behavior modes, this suggests existing robot datasets
could also be re-annotated to produce more steerable action
primitives, with little changes to the model architecture and
training pipelines. In the future, it would be useful to scale
up the discovery and labeling of dataset attributes, investigate
automatic relabeling, and more directly optimize annotations
to maximize the high-level agent’s skill composability.
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